Jon
2012-01-21 22:10:58 UTC
Distance on a cone
You have a 45-degree cone with base diameter 2 inches and height 1 inch. The
cone is sitting on a table with the apex pointed up. What is the minimum
distance of travel across the top curved surface between two points on the
bottom edge 180 degrees apart?
the half angle of the cone is pi/4
suppose the vertex of the cone is at (0,1,0)
cos(pi/4) =
(0,1,0)*(x-0,y-1,z-0)/sqrt[(0^2+1^2+0^2)((x-0)^2+(y-1)^2+(z-0)^2)] * dot
product
(sqrt 2)/2 = (y-1)/sqrt(x^2 + (y-1)^2 + z^2) equation of cone.
Suppose a plane section passes through the points (-1,0,0) and (1,0,0)
having normal (a,b,c).
(a,b,c)*(x,y,z)=0 (a,b,c)*(-1,0,0)=0 (a,b,c)*(1,0,0)=0 => a=0
(0,b,c)*(x,y,z)=0 by + cz = 0 => equation of plane
(b/c)y + z = 0 if (b/c) =D, Dy + z = 0 or z = – Dy substituting
in the equation of the cone,
(sqrt 2)/2 = (y-1)/sqrt(x^2 + (y-1)^2 + (-Dy)^2) => equation of curve
resulting from the intersection of the plane with the cone.
Solving for y,
(1/2)(x^2 + (y-1)^2 + (-Dy)^2) = (y-1)^2
x^2 – (y-1)^2 + (Dy)^2 = 0
(Dy)^2 - y^2 + 2y + x^2 – 1 = 0
(D^2 – 1)y^2 + 2y + (x^2 – 1) = 0
y = (1/(2(D^2 – 1)))(-2 +/- {2^2 – 4(D^2 – 1)(x^2 – 1)}^(1/2) ) by the
Quadradic Formula.
y = (1/(D^2 – 1))(-1 +/-{1 – (D^2 – 1)(x^2 –1)}^(1/2))
y = (1/(D^2 – 1))(-1 +/-{1 – [(Dx)^2 – D^2 - x^2 + 1] }^(1/2))
y = (-1 +/-{ x^2 – (Dx)^2 + D^2}^(1/2))/(D^2 – 1)
From Calculus, Arclength A is,
A = the integral of sqrt( 1 + (dy/dx)^2) dx from x= –1 to x=1
dy/dx = [{ x^2 – (Dx)^2 + D^2}^(-1/2)][x – (D^2)x]/(D^2 – 1)
(dy/dx)^2 = (x^2)/(x^2 – (Dx)^2 + D^2)
A = the integral of { 1 + (x^2)/(x^2 – (Dx)^2 + D^2) }^(1/2) dx from x=-1 to
x=1
A = the integral of { (2x^2 – (Dx)^2 + D^2)/(x^2 – (Dx)^2 + D^2) }^(1/2) dx
from x=-1 to x=1
A = the integral of { ((2 – D^2)x^2 + D^2)/((1 – D^2)x^2 + D^2) }^(1/2) dx
from x=-1 to x=1
A = the integral of { ((D^2 - 2)x^2 - D^2)/((D^2 - 1)x^2 - D^2) }^(1/2) dx
from x=-1 to x=1
[(D^2 – 2)^.5 x + D][(D^2 – 2)^.5 x – D]
A = the integral of
{ --------------------------------------------------- }^.5 dx from x=-1 to
x=1
[(D^2 – 1)^.5 x + D][(D^2 – 1)^.5 x – D]
u = (D^2 – 1)^.5 x x = (D^2 – 1)^-.5 u dx = (D^2 – 1)^-.5 du
D^2 – 2 D^2 – 2
[ {-----------}^.5 u + D ][
{-------------}^.5 u – D ]
D^2 – 1 D^2 - 1
A = the integral of
{-----------------------------------------------------------}^.5 (D^2 –
1)^-.5 du
(u + D)(u – D)
D^2 - 2
B = {----------}^.5
D^2 – 1
(Bu + D)(Bu – D)
A = (D^2 – 1)^-.5 * the integral of { ------------------------}^.5 du
(u + D)(u – D)
B^2 u^2 – D^2
A_u = {---------------------}^.5
u^2 – D^2
A_0 = (D^2 – 1)^-.5
u^2 – D^2
2u 2B^2 u
A’_u = .5{---------------------}^.5 { (B^2 u^2 – D^2)(-1)------------------
+ ------------------- }
B^2 u^2 – D^2
(u^2 – D^2)^2 u^2 – D^2
u^2 – D^2 -2B^2 u^3 + 2D^2 u
2B^2 u
A’_u = .5{---------------------}^.5 {-----------------------------
+ ----------------}
B^2 u^2 – D^2 (u^2 – D^2)^2 u^2 –
D^2
A’_0 = 0
B^2 u^2 – D^2 (u^2 –D^2)(2B^2 u)
2u -2B^2 u^3 + 2D^2 u 2B^2 u
A’’_u = .5*.5{--------------------}^.5 { ----------------------------
+ --------------------}{--------------------------- + --------------} +
u^2 – D^2 (B^2 u^2 – D^2)^2
B^2 u^2 – D^2 (u^2 – d^2)^2 u^2 – D^2
u^2 – D^2 2u(-2B^2 u^3 + 2D^2 u) -2*3 B^2
u^2 + 2D^2 2u(2B^2 u) 2B^2
.5{---------------------}^.5 { - 2----------------------------------
+ ----------------------------- + ------------------- + -----------------}
B^2 u^2 – D^2 (u^2 – D^2)^3
(u^2 – D^2)^2 (u^2 – D^2)^2 u^2 – D^2
2 2B^2 1 – B^2
A’’_0 = .5{ ------- - -------- } = ------------
D^2 D^2 D^2
A = A_0 + A’_0 u + A’’_0 u^2
1
– B^2
A = {D^2 – 1}^-.5 * the integral of [1 + 0*u + ------------u^2 ] du from u
= - (D^2 – 1)^.5 to u = (D^2 – 1)^.5
D^2
1 1 - B^2
A = {D^2 – 1}^-.5 [ u + ----- * ------------u^3 ] from u = - (D^2 – 1)^.5
to u = (D^2 – 1)^.5
3 D^2
A = {D^2 – 1)^-.5 [ 2(D^2 – 1)^.5 + (2/3)(1 – B^2)[{D^2 – 1}^(3/2)]/D^2 ]
A = 2 + (2/3)(1-B^2)(D^2-1)/D^2
D^2 - 2
B = {----------}^.5 B^2 = (D^2 – 2)/(D^2 –1)
D^2 – 1
A = 2 + (2/3)( 1 – (D^2 – 2)/(D^2 – 1) )(D^2 – 1)/D^2
A = 2 + (2/3)( ( (D^2 – 1) – (D^2 – 2) )/D^2
A = 2 + (2/3)/D^2
dA/dD = (2/3)(-2)/D^3 = 0 to minimize A.
D approaches infinity for this condition to be met. That is, D = b/c = oo
or c = 0, the z-component of the normal. This means the shortest path is a
straight line from (1,0,0) to (0,1,0) and from (0,1,0) to (0,0,-1).
check:
2sqrt 2 < pi : true
You have a 45-degree cone with base diameter 2 inches and height 1 inch. The
cone is sitting on a table with the apex pointed up. What is the minimum
distance of travel across the top curved surface between two points on the
bottom edge 180 degrees apart?
the half angle of the cone is pi/4
suppose the vertex of the cone is at (0,1,0)
cos(pi/4) =
(0,1,0)*(x-0,y-1,z-0)/sqrt[(0^2+1^2+0^2)((x-0)^2+(y-1)^2+(z-0)^2)] * dot
product
(sqrt 2)/2 = (y-1)/sqrt(x^2 + (y-1)^2 + z^2) equation of cone.
Suppose a plane section passes through the points (-1,0,0) and (1,0,0)
having normal (a,b,c).
(a,b,c)*(x,y,z)=0 (a,b,c)*(-1,0,0)=0 (a,b,c)*(1,0,0)=0 => a=0
(0,b,c)*(x,y,z)=0 by + cz = 0 => equation of plane
(b/c)y + z = 0 if (b/c) =D, Dy + z = 0 or z = – Dy substituting
in the equation of the cone,
(sqrt 2)/2 = (y-1)/sqrt(x^2 + (y-1)^2 + (-Dy)^2) => equation of curve
resulting from the intersection of the plane with the cone.
Solving for y,
(1/2)(x^2 + (y-1)^2 + (-Dy)^2) = (y-1)^2
x^2 – (y-1)^2 + (Dy)^2 = 0
(Dy)^2 - y^2 + 2y + x^2 – 1 = 0
(D^2 – 1)y^2 + 2y + (x^2 – 1) = 0
y = (1/(2(D^2 – 1)))(-2 +/- {2^2 – 4(D^2 – 1)(x^2 – 1)}^(1/2) ) by the
Quadradic Formula.
y = (1/(D^2 – 1))(-1 +/-{1 – (D^2 – 1)(x^2 –1)}^(1/2))
y = (1/(D^2 – 1))(-1 +/-{1 – [(Dx)^2 – D^2 - x^2 + 1] }^(1/2))
y = (-1 +/-{ x^2 – (Dx)^2 + D^2}^(1/2))/(D^2 – 1)
From Calculus, Arclength A is,
A = the integral of sqrt( 1 + (dy/dx)^2) dx from x= –1 to x=1
dy/dx = [{ x^2 – (Dx)^2 + D^2}^(-1/2)][x – (D^2)x]/(D^2 – 1)
(dy/dx)^2 = (x^2)/(x^2 – (Dx)^2 + D^2)
A = the integral of { 1 + (x^2)/(x^2 – (Dx)^2 + D^2) }^(1/2) dx from x=-1 to
x=1
A = the integral of { (2x^2 – (Dx)^2 + D^2)/(x^2 – (Dx)^2 + D^2) }^(1/2) dx
from x=-1 to x=1
A = the integral of { ((2 – D^2)x^2 + D^2)/((1 – D^2)x^2 + D^2) }^(1/2) dx
from x=-1 to x=1
A = the integral of { ((D^2 - 2)x^2 - D^2)/((D^2 - 1)x^2 - D^2) }^(1/2) dx
from x=-1 to x=1
[(D^2 – 2)^.5 x + D][(D^2 – 2)^.5 x – D]
A = the integral of
{ --------------------------------------------------- }^.5 dx from x=-1 to
x=1
[(D^2 – 1)^.5 x + D][(D^2 – 1)^.5 x – D]
u = (D^2 – 1)^.5 x x = (D^2 – 1)^-.5 u dx = (D^2 – 1)^-.5 du
D^2 – 2 D^2 – 2
[ {-----------}^.5 u + D ][
{-------------}^.5 u – D ]
D^2 – 1 D^2 - 1
A = the integral of
{-----------------------------------------------------------}^.5 (D^2 –
1)^-.5 du
(u + D)(u – D)
D^2 - 2
B = {----------}^.5
D^2 – 1
(Bu + D)(Bu – D)
A = (D^2 – 1)^-.5 * the integral of { ------------------------}^.5 du
(u + D)(u – D)
B^2 u^2 – D^2
A_u = {---------------------}^.5
u^2 – D^2
A_0 = (D^2 – 1)^-.5
u^2 – D^2
2u 2B^2 u
A’_u = .5{---------------------}^.5 { (B^2 u^2 – D^2)(-1)------------------
+ ------------------- }
B^2 u^2 – D^2
(u^2 – D^2)^2 u^2 – D^2
u^2 – D^2 -2B^2 u^3 + 2D^2 u
2B^2 u
A’_u = .5{---------------------}^.5 {-----------------------------
+ ----------------}
B^2 u^2 – D^2 (u^2 – D^2)^2 u^2 –
D^2
A’_0 = 0
B^2 u^2 – D^2 (u^2 –D^2)(2B^2 u)
2u -2B^2 u^3 + 2D^2 u 2B^2 u
A’’_u = .5*.5{--------------------}^.5 { ----------------------------
+ --------------------}{--------------------------- + --------------} +
u^2 – D^2 (B^2 u^2 – D^2)^2
B^2 u^2 – D^2 (u^2 – d^2)^2 u^2 – D^2
u^2 – D^2 2u(-2B^2 u^3 + 2D^2 u) -2*3 B^2
u^2 + 2D^2 2u(2B^2 u) 2B^2
.5{---------------------}^.5 { - 2----------------------------------
+ ----------------------------- + ------------------- + -----------------}
B^2 u^2 – D^2 (u^2 – D^2)^3
(u^2 – D^2)^2 (u^2 – D^2)^2 u^2 – D^2
2 2B^2 1 – B^2
A’’_0 = .5{ ------- - -------- } = ------------
D^2 D^2 D^2
A = A_0 + A’_0 u + A’’_0 u^2
1
– B^2
A = {D^2 – 1}^-.5 * the integral of [1 + 0*u + ------------u^2 ] du from u
= - (D^2 – 1)^.5 to u = (D^2 – 1)^.5
D^2
1 1 - B^2
A = {D^2 – 1}^-.5 [ u + ----- * ------------u^3 ] from u = - (D^2 – 1)^.5
to u = (D^2 – 1)^.5
3 D^2
A = {D^2 – 1)^-.5 [ 2(D^2 – 1)^.5 + (2/3)(1 – B^2)[{D^2 – 1}^(3/2)]/D^2 ]
A = 2 + (2/3)(1-B^2)(D^2-1)/D^2
D^2 - 2
B = {----------}^.5 B^2 = (D^2 – 2)/(D^2 –1)
D^2 – 1
A = 2 + (2/3)( 1 – (D^2 – 2)/(D^2 – 1) )(D^2 – 1)/D^2
A = 2 + (2/3)( ( (D^2 – 1) – (D^2 – 2) )/D^2
A = 2 + (2/3)/D^2
dA/dD = (2/3)(-2)/D^3 = 0 to minimize A.
D approaches infinity for this condition to be met. That is, D = b/c = oo
or c = 0, the z-component of the normal. This means the shortest path is a
straight line from (1,0,0) to (0,1,0) and from (0,1,0) to (0,0,-1).
check:
2sqrt 2 < pi : true